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Abstract. TheclassicalSO(3)-invariant u-modelanditssuitablygeneralizedversions
are studiedfrom thegeometricalpoint of view. Knownmathematicalresultscon-
cerningharmonicandholomorphicmapsofaRiemannsurfaceinto then-dimensio-
nal complexprojective spaceare briefly reviewed.Theseareusedto giveaclassifi-
cationof classicalsolutions(bothinstantonsandacertainsubclassof unstablesolu-
tions)of

62~fl modelsandto studythepropertiesof their energyspectrum.

1. INTRODUCTION

1.1. In recentyears,severaltheoriesand modelshavebeenproposedin physics,

which were realized to be rich in geometricalmeaning. Among these,someof

themostimportant to physicsseemto be at presenttheYang-Mills gaugetheories,
for which the dynamical field can be regardedas a connectionon a principal

fibre bundle [1].

For Yang-Mills fields, this geometrical interpretationhasbeenfar from amere
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translationof the probleminto a moreor less sophysticatedmathematicalform,

yieldinginsteada deepinsight into the theoryandprovidingdetailedprescriptions

for constructingand classifying classicalsolutionsof the field equations[2]. This
has beenparticularly the case for the elliptic version of the field equations,i.e.

for the studyof Yang-Mills instantons,which hasbeenshown[3] to be equivalent
to a problemof complexanalysisand finally to oneof algebraicgeometry.Indeed,

it was by meansof the powerful tools of modernalgebraicgeometrythat the
problemwas fmally solved [4].

Complex and algebraic geometricalmethodshave been recently applied to

some other differential equationsof mathematicalphysics. Besides the Yang-
-Mills instantonsrecalledabove,thereis the moregeneralprogrammeof twistor
theory [5], some applicationsto gravitational instantons[6, 7] and the study
of completely integrable dynamical systemssuch as the Korteweg - de Vries

equation [8]. Finally, Hitchin [9] has shown that the Bogomolnyequationfor

non-abelian monopolescan be treated as well in complex geometrical terms.
In this paperwe describein full detailsafurther applicationof methodsfrom

algebraicgeometry to physics,that is we study the classicalsolutionsof the
2-dimensionalCP~models. Although this may be considereda fairly simple
exercise,comparedwith the results quotedabove, it seemsinterestingto explore

this problem, since it is in some sensea low dimensionalanalogueof the Yang-
-Mills theory. Besides,it may help in understandinghow some of the basictools

of algebraicgeometrywork, when applied to a problemof mathematicalphysics.

1.2. The physical interest of instanton solutions was first discoveredin the
quantumtheory of Yang-Mills fields [10]. From the classicalpoint of view the

basic feature of instantonsis that they provide absoluteminima for the action

functionalof the theory, among fields with a given topologicalstructure(depen-
dingon boundaryconditions).

• A similar phenomenonwas shown [11] to occour in 2-dimensionalferroma-
gnets,when describedby meansof the standardSO(3) - invariant u-model.This

model was later generalized to SU(n + 1)/~~+ 1-invariant u-models,which are
now called CP~models. It was immediately noted [13] that the generalCE” -

-instantonsolution on S
2 could be expressedin terms of relational functionsof

one complex variable. Since these are algebraicobjectson the Riemann sphere,
one may think as a <<must>> to understandalso the CE” modelsin algebraicgeo-
metrical terms.As we shall see, this will leadto a rathercompleteclassification
of finite energy solutions subjectedto generalizedboundaryconditions andto

a detailed descriptionof the parameterspaceon which suchinstantonsolutions
depend.Some of these results havebeenalreadypublishedin a seriesof papers

[14 - 34- 36], while this paperis devotedto collect them in a detailedintroduc-
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tory way.

1.3. In section 2 we shall recall the structureof the basic non linear u-model

and of its generalizations.In particular various natural <<parametrizations>>of
the field, as well as suitable generalizedboundaryconditions,will be discussed.
Section 3 dealswith the translation of the problem into a form in which the

natural underlying complex structuresare made,apparent.This is by no means
a mathematicaltrick, sincesuch structuresdo actually enter in a canonicalway
into the CE” modelsandone cannoteffort to neglectthem,unlessone is willing

to take the hard way in solving the field equations.Indeed,there are plenty
of results,alreadyavailable from the mathematicalliterature,which are relevant

for the solution of the problem. Someof thesewill be reviewed in section3.
In the next section,we shall use the powerof complexmethodto yield actual

classical solutions of CP” models with generalizedboundaryconditions. No
differential equations, other than Cauchy-Riemannequations,will enter this

section.The results by Din and Zakrzewski [151,Burns,Glaser andStora,which
have beenfully provedand generalizedby Eells and Wood [16], will bebriefly
recalled and adoptedto presenta family of classicalsolutions which turn out

to be unstable.Finally, we shall deal with the classicalobservables-i.e. the
energy and the <<topological charge>>- in a syntheticway, which avoidscumber-
some computations aimed at obtaining actual analyticalexpressionsfor the

solutions.
We shall then enterthe mathematicalcore underlying the physical problem.

First, in section5, we shall give a brief review of the resultsavailable from alge-
braic geometrywhich will be employedin the sequel. Basic an specializedrefe-
renceswill be given. In section 6 we shall describe,as far as it is possibleat the
presenttime, the energyspectrumand the parameterspacesof classicalsolutions
of CE” models. Generalizedboundaryconditions will be considered,as well

as the standardboundaryconditions;in the former case less completebut inte-

restingresultswill be presented.

Acknowledgements

We thank the Editorial Board of <<Geometry and Physics>> for inviting us to
write this paper,aftera shortnote [37] was presentedby oneof us at themeeting

<<Geometryand Physics>>held in Florencein september1982.

2. CP” NON LINEAR a-MODELS

2.1. In the simplestnon linearu-model,the dynamicalfield is a map ~ 1R2—*S2.
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The field ~ is usually representedby a vectorn E 1R3, satisphyingthe constraint

n - = 1. If, however,S2 is idenfied with the RiemannsphereF’ (hereinafterwe
shall drop the prefix ~r,sinceno confusion can arise),a naturalcomplexparame-

trization for the field 0 can be given [17]. In this case, the energy functional
takesthe form

— I a’1h ~a
10”~.~v(a),

2)

where a is the Euclideanmetric on 1R
2, v(a) is its volume elementandh is the

Fubini-Study metric on IP’ (see AppendixA). Classical solutions for this model

with finite energy are local extremaof E( ), subjectedto theboundarycondition

-+ const for x ~-÷ oo. This boundarycondition makesit possibleto extend~
continouslyto the one point compactificationof the domain JR2U {oo} = S2=

= F’; the facts that 0 hasfinite energyand is an extremalof E imply that this

extension 0 fl~1 — ~ is in fact smooth.Thus one can restrict the searchfor
classicalsolutionsto smoothmapsof F’ into itself.

2.2. This model canbe generalizedas follows. First note that the compactifica-
tion of the domain into S2is not theonly possiblechoiceleadingto finite energy
solutions. Indeed, if we allow ourselvesto changethe metric on 1R2, we may

envisageperiodicity conditions on the map (and on the metric)which makeit
possibleto translatethe probleminto one for mapsinto F’ from compacttwo-

-dimensionalorientablesurfacesother thanS2. An alternative,andmoreintutive,
way of obtaining the same <<generalization’>is to imagine oneselfstudying the
Heisembergmodel of a two-dimensionalferromagnetmorecomplexthana plane
sheet,as a torusor a compactsurfacewithg <<holes>>canbe (1).

A further naturalgeneralizatton[12, 13] is to study maps into higher dimen-
sional projectivespacesF7 (see Appendix A, for a short accounton thesema-

nifolds). This is nice from the physicalpoint of view,since suchmodelsexhibit

aSU(r + 1) internalsymmetrygroup (2).

2.3. In order to defme the energy functional for these generalizedcases,it is

(I) To avoid further mathematicalcomplications,we shall not discusshere surfaces with
boundary(asa disk),whichmight aswell be interestingfromthephisicalpoint ofview.

(2) Actually, the effective internal symmetry group is SU(r + 1)/~~+~. For instance,in
thecaser = 1,we recowrthebasicu-modelwith symmetrygroupSU(2)/71

2 SO(3).
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convenientto assumethat the domain of the problemis orientable.As already
mentioned,it is simpler to limit oneselfto connected,compactsurfaceswithout

boundary. It is well known that diffeomorphism classesof such surfacesare
classified by a non-negativeintegerg. called the genus of the surface 118].

The genusand the Euler-Poincarècharacteristicx of the surfaceare related by

x = 2 — 2g. This shows that a surface of genusg is diffeomorphic to a <<sphere
with g handles>>.

Let now

0 :Sg-+F
T

be a smoothmap. Composingwith coordinates,one can locally represent0 as

12 i 12

(x ,x ) —~ ~ (x ,x ),
where x~L, ~ are local coordinateson S~and F7 respectively (~.t= 1, 2; i =

= 1,.. . , r). Considernow the 1-forms

- —

= — dxv, d~’= —

axM axM

which can be consideredas 1-forms on 5g’ with values in the holomorphic
(T~”°~)and the antiholomorphic(T~°”~)tangentbundleof F7. For any metric

a = a dxM® dx given on 5g’ one can constructa global T (1,O)® T (0,1) valued
2-formon Sg~given by

e’rr d~Ad~1=V’ã~ta,~~aMPa~a~~’dx1Adx2.

In order to produce a global section of A2(Sg)~we can use the Fubini Study
metrich of F7 (•seeAppendixA), yielding

e(0) = h
11 ~

Theintegral

E(Ø)= fe(o)
~Sg

will be calledthe energy (3) of the F
7 model. Stationaryenergymaps,i.e. maps

0 : S~~+FT satisfying the Euler-Lagrangeequationsfor the functional E, will

(3) Sincethe domain of the problemis Riemannianand the field equationsarising from
thevariationalproblembE= 0 are elliptic, E(0)will becalledtheenergyof the field 0 instead
of theactionof 0.
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be called classicalsolutions. In the following we shall limit ourselvesto study
classicalsolutions of finite energy. Those which give local minima of E, i.e.

stableclassicalsolutionsof finite energy,will be calledinstantons.

2.3. We comenow to discusssome parametrizationsone can give to the maps

q~.First of all, one can use homogeneouscoordinateson IF7, representing0 as

a set z0(x
1,x2) z’~(x1,x2). In this casethe energytakesthe form

( (z~T~)~ziaMZ._zkzJa,~zaPz.
E(0)= v(a) v I I -

‘sg (z1)2

One can easily verify that this action is invariantunderlocal ~t*gaugetransforma-

tions, given by z~-+ X(x) z~,where X(x) is any non-vanishingcomplex valued

functionofx1,x~.
Restrictingoneselfto theS

2~~’spheregivenby z1~= 1 ,onehasthe following

from for theenergy,

= Lgv(a) (ö~z13~_YkaMzk z’~?

z’Y~= 1,

which is invariant underlocal U(l) gaugetransformationsgiven by ~

This can be made explicitly apparentwriting E(0) in a gauge invariant form;

E(0) = (D~ziD~,

JSg

DM= ~

A,~=—

zk;= 1.

Here iA dxM is a U(l) connectionon the principal bundle~2r1 U(1) > FT (see
Appendix A), playing the role of a gaugepotential. This is the form in which

F7 models havebeenintroducedin the physicalliterature.Note, however,that
the connectioniA,~dx’2does not enter in a dynamicalway in the energy func-

tional, but hasto be consideredas an <<esternalfield>> transformingin sucha way
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that the local U( 1) invarianceof the problemis preserved.We seethenfrom the

very beginning that, if z”1x1,x2) is the representationof a solution 0 of the
variational problem bE = 0, so is dx ,X~)zkfor any real function x(x’,x2).

In the following we shall use the parametrizationnaturallygiven in terms of

the local coordinates~“ on FT. This has the advantagethat thereare no more

costraintson the field variables,nor non dynamicaldegreesof freedom.Finally
we note that the internal (global) symmetry group is reducedin this caseto

SU(r + 1)/~~~1’ which acts effectively as the isometry group of the Fubini-
-Study metric on W~.Whenthis parametrizationis assumed,the energyfunctional

takesthe form

( (l+~)a’a.—~ka~E”~’a ~.

E(0)= I v(a) — P I

(l+~~k)2g

2.4. For any C~map 0 :Sg~+F7, we define the tensionfield [19] of 0 by the
following local expression

a~1’ ~i
r(0)’ =a~” —r~— +7.’k — —

ax1.tax~~ a ~‘ aX~ a

wherer andy arethe Christoffelsymbolsof themetric a on S~andof the Fubini-

-Study metric h of F’ respectively.It canbe shownthat r(0)’ is a C~section
of the bundle ~* TF’ over S~,obtained by pulling back the tangentbundle
TIP’ via the map 0. A map 0 suchthat r(0) = 0 is calledharmonic.

Recallnow the

PROPOSITION2.5. A C~map 0 -÷ F’ is a critical point of theenergyfunc-

tional E, if andonly if it is harmonic.

Proof By computingthe first variation of E, one easily shows that it vanishes
at q~if andonly if the tensionof 0 vanishes,i.e. r is theEuler-Lagrangeoperator

of E. For a detailedproofseee.g. Eells andSampson[20].

REMARK. The propositionabovegivesus the field equationsfor the F’ models
in the form r(0)l = 0. Note that this is true in generalfor any map 0 : X -+ Y,

with X compact,Y complete.

3. CONFORMAL INVARIANCE AND COMPLEXIFICATION OFTHE DOMAIN

Harmonicmapscanbe definedbetweenanytwo RiemannianmanidolfdsX and
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Y, by meansof the naturalgeneralizationof the energy functional introduced
above.We recallnow a resultwhich is narticularlyinterestingfor thepresentcase.

PROPOSITION3.1. A map 0 : X -+ Y, which is harmonic with respectto a given

metric structurea on X, is alsoharmonicwith respectto anyconformally equiva-

lent metricstructurea’ = f 2 a (f2smoothandpositve)if andonly if dim X = 2.

Proof. Let r~(0)be the tensionfield of 0 with respectto a’. Then,if dimX = n

- 1 a _______ a~ ay1
= — — f”V’deta~” — — +

ffl axTM f2 a.x~

as” - ay1 ay”
I axTM axv

where xTM, y’ are local coordinateson X, Y and L are the Christoffel symbols
of themetricon Y. At this point it sufficesto noticethat

- 1 ______a’~’ af 3y’
= — i-(Ø)’ +(n — 2) V’det a~~’— — —

f2 f2 öx’2 axv

REMARK. Conformal invarianceis the reasonwhy in the physicalliterature F’
modelsare mainly studiedon a two-dimensionaldomain.

3.2. It is well known that any orientablesurface,suchas our surfacesSg~admits
a complex structure.It is therefore natural to give a version of the F’ models
in which thepowerof complexmethodscanbe used.

As a corollary to proposition 3.1, we seethat in our caseonly a conformal

class of metrics needsto be given on S~.It is a classical result of Riemann’s
that thereexists a one-to-onecorrespondencebetweenconformaland complex

structureson Sg (seeAppendixB, for anelementaryaccount).

In order to give a definite meaningto a IF7 model, one must be able to find

out from the physics of the problem the conformal structureor, equivalently,
the complex structureon Sg one is dealing with. In the caseof F’ models,which

are physically interpretableas modelsfor ferromagnetismon an actual surface
of genusg living in the physical space1R3, the restrictionof the standardEucli-
deanmetric of 1R3 to Sg definesunambigouslya <<physical>> metric on Sg~This,
in turn, selectsa conformal structureand hencea unique complex structure
on the domain of the model Sg For pr models,this <<physical>>interpretationis

lacking. However, proposition 3.1 requires that a conformal structureon is
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given. Had this not beenthe case,one would not beable to definewhatis meant

by harmonicityof a map 0 S~—~F’.
Finally we note that in any case,oncea conformal structureon Sg hasbeen

fixed, the correspondingcomplex structureturns Sg into a complexone-dimen-

sional compact manifold. In the following S~with a fixed complex structure
will be called tout-court a (complex) curve and will be denotedby C. It is a
standardresult (see e.g. [21]) that any such curve,being compact,is algebraic,

that is it can be realizedas the zero locus of a finite numberof homogeneous
polynomialsin F”, for somen.

3.3. We shall now benefit of the fact that C has a complexstructureto give a
new formulation of the F’ models. Let z be a local complexcoordinateon C.

One-formsover C canbe split into (1,0) and(0, 1) partsaccordingto

w=wdxTM=—(w,—iw
2)dz+—(w,+iw2)dY

TM 2 2

There is therefore a canonical way of splitting the forms d ~‘, d~kof section
2.4 asfollows

d~=~dz +~d~Y,

dP=~dz +j~dY,

where the suffix z (z) denotes partial derivation with respect to z (z). Note that
(droppingtheindex k)

~~dz� r~’~°~r®T*~,o)C

~1dTE T~’°~F’®T~~°”~C,

~dz E T~°~’
1p’®T*(l,O)C

~,dTc T~°’‘~1~’® T*(O, ‘IC.

By meansof the Fubini-Study metric h on F’, we can now construct two global

real valued 2-forms on C, whichare positive defmite and locally givenby

— h(~
2,~)dzAdY,

2

1) = — h (~,~) dzA dY.
2

Note that these forms depend only on the complex structure of C anddo not
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require any choice of a particular metric structurewithin the conformal class
of metricscompatiblewith the complexstructureof C. This immediately shows

that ~ 0) and �(° 1) are conformallyinvariant.
It is now trivial to check that the energyof IF7 modelsgiven in section2.4

canbe expressedas follows

E(0)= (�(10)+ f~(01)

IC

In particular,the conformal invarianceof E is now apparent.

3.4. Consider now the difference fe(’~0)_ f�(0~1). If 4 = ihfk-d~lA d~’is

the Kàhler form of IF7 (seeappendixA), onehas;

=ifO*(~d~/Ad~) =fo*~)~

where 0” denotesthe pull-back map associatedto 0- The integral f0*(c1) is

classically called the degree of the map 0 C -÷ F’; it is an integer, which will

be denotedby deg(0).
What mattersin the following is that deg(0) dependsonly on the homotopy

classof 0- In fact, in integral cohomology,one hasthat the pull-back O*[H] of
the cohomology class of a hyperplaneH in pr is given by O*[HI = deg(Ø)~,

where~ is the (positivelyoriented)generatorof H2(C, 7Z) (4).

(4) An elementaryproofof the homotopyinvarianceof deg(0) canbeobtainedas follows.
Let F, : C x [0, 1] -~-F’bea smoothhomotopybetweentwo maps~ = F, and i,& = F~,of C in

pr Since the 2-formF,*(~)is closed, we havethat f F~*(~t)= f dF~.*(I)= 0,
3(CxIO,lI) CxIO,1j —

where a is the boundaryoperator.Now a(Cx [0,1]) =(Cx 0)U(~x 1), where C denotes

C with the oppositeorientation. Then 0 = J F*(~)= J ‘~I)— J 0*(~),which
I(Cx[O, ‘1) C C

showsthatdeg(0) = deg(0).
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From the geometricalpoint of view, one can show that the degreeof a holo-

morphic map 4, : C—* F7 is givenby deg (4,) = b - n, whereb standsfor the degree
of the (possibly ramified) covering C—’~4,(C) inducedby 4,, andn is the degree

of 0(C) as subvarietyof F’. Infact,by Wirtinger’s theoremn = f 4). Notethat,
~‘ (C)

whenF’ models are considered,4,(C) = F’ and deg (0) coincideswith b, which
gives the numberof counterimages4,~’(p)of any point p E F’. In the caseof

maps 0 C—~ F’ (r> 1), neitherb nor n areseparatelyinvariant underhomoto-
pies; in fact they are not invariantevenunder a holomorphichomotopy.Never-
theless,as we know, their productb- n = deg (4,) is a homotopyinvariant.

Therelevanceof this invariant for IF’ modelsis due to the following result [19];

PROPOSITION 3.5. In any given homotopyclass of maps 4, : C -+ F’, holomor-

phic or anti-holomorphicmaps(if any)give absoluteminima ofthe energyfunc-
tionalE.

Proof Since both the integralsof ~ 0) and ~ 1) over C arepositive definite,
we have that E(4i) ~ deg(~)IThen E(4,) = deg(0)~if and only if e(’~°~= 0

or �~°~1) = 0. In the first case is must be ~ = 0 and 0 is holomorphic,in the
secondcase = 0 and 4, is anti-holomorphic.

COROLLARY 3.6. Holomorphic and anti-holomorphic maps 0 : C -+ IF’ are
harmonic.

REMARK. Whenr = 1, we recoverthe result of Belavin and Polyakov [11] for
the standardnon linear u-model.

4. HARMONIC AND HOLOMORPHICMAPS

4.1. The complex formulation of the problemgiven in the previoussectionhas
the advantageof yielding in a naturalway plenty of classicalsolutionsof finite
energyfor the F7 modelssubjectedto generalizedboundaryconditions.Moreover,

proposition3.5 tells us that, in certain cases(seebelow),the full non linearfield

equationsare indeedequivalent to the best known systemof differential equa-
tions,i.e. Cauchy-Riemannequations.

The next natural step is to look for the converseof corollary 3.6. In other

words, we know that holomorphicmaps are classicalsolutions and we would
like to know if any classicalsolution correspondsto a holomorphicmap. If
this were the case,one could use the greatdeal information available from alge-

braic geometry to classify classicalsolutionsof F’ modelsand to studytheir
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parameterspaces.Unfortunately, this is not true for generalF’ models.Never-
theless,we shall review in the following what is known; as we shall see, in turns
out that for the simplestjanil probably morephysical) caseseveryclassicalsolu-
tion of finite energy is eithergiven by a (anti)-holomorphicmap or canbe con-

structedin termsof a (anti)-holomorphicInap.

4.2. The first case to be consideredis that of the standardSO(3) invariant
a-model, subjectedto generalizedboundaryconditions.We already know that

classical solutions correspondto maps 4, : C -+ F’, which are harmonic with
respectto the Fubini-Study metric on F’ and to a given complex structureC

on Werecall thefollowing result,referringto [19] for the proof.

PROPOSITION4.3. Any classical solution 0 : C-÷ F’, defined on a curve C of
genusg, with deg(0) ~‘ g is holomorphic.

REMARK. Note that by changing the orientation of C, a holomorphic map
becomesan anti-holomorphicmap on C. So, proposition 4.3 tells also that,

if deg (0) ‘( —g, 0 is antiholomorphic.In the following we shall limit ourselves
to state the relevant results for the holomorphiccase.By reversingthe orienta-

tion of C oneobtainsanalogousresultsfor anti-holomorphicmaps.
As a corollary to proposition4.3, we note that for the usual form of the non

linear a-model the domain of the problem is the Riemannsphere,for which

g = 0. Accordingly,wehave

COROLLARY 4.4. Anyclassicalsolution 4, : F’ -÷ F’ is holomorphic.

REMARK. For the torus,the genusg is equalto 1. Thenevery classicalsolution
of degreelarger than zero has to be holomorphic.However,thereare no holo-

morphic mapsof degreeone from the torus to F’. Indeedany suchmap is inver-

tible and the inverse would be holomorphic;hence we would have that the
torus and the Riemannsphere are isomorphic as complex manifolds,which is
false. In particular we seethat thereare no harmonicmapsof degreeonefrom

the torus to F’, that is thereare no classicalsolutionsof degreeone for the
standarda-modeldefinedon a torus.

According to proposition 4.3, non holomorphicsolutionsof IF’ modelsare
bound to have small degrees.The following results tells us that this classis not
empty.Infact wehave [22]

PROPOSITION4.3.For any d, 0 ~ d ~g — 1, there exist a complexstructure C
on and a harmonic map 4, C -* ~ with deg(4,) = d which is not holomorphic
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with respectto that complexstructure.

Note that the propositionabovetells usnothingaboutthe existenceof harmo-
nic maps to F’ (either holomorphicor not) of small degreefrom a surfaceof
genusg with a givencomplexstructure.

4.6. Our knowledgeabout the generalcaseof F’ modelsis evenless complete,
exceptwhenthey are definedon the Riemannsphere,that is they aresubjected
to the usualboundaryconditions. In what follows we shall needthe conceptof

isotropic maps. Given any map 4, : C —* F7, we can pull-back on C the tangent
bundle TIPT of F’ togetherwith any structuredefinedon it. We shall denote

by (,) the hermiteanfibre metric on this pull-backbundlewhich is inducedby
the Fubini-Study metric on TIP’, and by D’, D” the holomorphicand anti-

-holomorphic parts of the covariant differential operatorsobtained by pulling
backthehermiteanconnectionof TFT.

DEFINITION. We say that a map 0 : C -~ IF7 is isotropic if, for any I, k ~ 1, one

has (D / 0~D 0) = 0 at any point of C. (D / and D standfor the iterations

ofD’ andD” land k timesrespectively).

REMARK. It can be shown [15] that any harmonicmap 4, : -÷ F’ is isotropic.
The sameholds true for harmonicmapsof non-zerodegreefrom the torusto F7.

We recallalso that

DEFINITION. A map0 C—* F’ issaid to be full, if its image4,(C) is not contained

into anyF5 CF’ (s <r).

The concept of isotropy of maps was introducedbecauseof the following

result [16].

PROPOSITION4.7. There is a one-to-onecorrespondencebetweenisotropic and
full harmonicmaps 4, : C -+ IF’ and pairs (f, k) wheref: C —* F’ is a holomorphic

mapand kis an integer0~<k~<r.

REMARK. This proposition is very useful in the caseof F’ modelswith standard
boundaryconditions, whoseclassicalsolutionsare harmonicmaps 0 : F’ —÷F7.
Indeed,any such map is isotropic. Then, in this case,holomorphicmapsgive rise

to all the classicalsolutions.This will be furtherdiscussedin section6.

We refer to [16] for the proof of 4.7. The most importantpoint for our con-
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cern is to show here how a holomorphicmap cangeneratea solution which is
not holomorphic.Any full holomorphicmapf: C—’- IF’ canbe locally represented

by a vector valued function v C -+ c’~’which associatesto any z E LI C C the

line in C’~1 corresponding to f(z), i.e. f(z) = (v
0(z), - - - , v7(z)). Let now

v(1~(z)= -~— v(z) denotethe i-th order derivativeof v(z). For any i, v~is still

a vector valued function v~: C -÷ C’~’ locally defined on U C C. From these

data, one can constructa map which associatesto z E U the linear spanof the
VW’s in Ci”’. Let Gr(k + 1, r + 1) be theGrassmannianof k + 1-planesin C’~’.

The k-th associatedcurveoff is a map fk C —* Gr(k + 1, r + 1), which is locally
defined by letting fk(z) be the k + 1-planein Ci”’ spannedby v(z), v

t’~(z)

v~”~(z).We refer to [21] in order to realizethat fk is well defined,in that it does

not vanish identically and is independentof the choiceof thelocal representation
off by v(z). Finally we note that f

0 = f and that it is convenientto putf, equal
to the zero map. Associatedcurves to anti-holomorphicmapscan be obviously
defined in thesameway.

Let now fk(z)L be the orthogonal complementof fk(z) with respect to the
standardhermitian metric of C’~’ The (anti-holomorphic)mapf: C -+ F

7 given

by f(z) = f,_

1(z)’ is called thepolar curve off. (Recallthat

f—i

C ‘ Gr(r, r + 1) —* Gr(l, r + 1) = F
7).

Now for any k, 0 ~ k ~ r, we candefinea (non holomorphic)map “k C-÷ F’ by

= (fk_,(z) ef,_k_,(~)).

To explain this definition, we note that fk_l(z) in an k-plane in C7~‘,-~~k_1(z)

is an r — k-plane in ~ ~ Their directsumis anr-planein C’~1whoseorthogonal
complementis a line in C7+ 1, i.e. apoint in F7.

It can be shown that 4,~(z)is isotropic, but the important point for us is

that it is harmonic. Infact is the compositionof a map

C—~ Gr(k, r +1) x Gr(r — k, r + I) given by 4,~(z)= (fk_,(z),f,_k_l(z)) and
the orthogonalprojection ~r.Now i,1i,,~ is harmonic,becauseits two components
are separatelyharmonic~fk, is holomorphicand f,—k—1 is anti holomorphic),
and the orthogonalprojection, being a Riemanniansubmersion[22], fulfills the
requirementsin orderthat ir o beharmonic.

4.8. Proposition 4.7 gives us a tool for constructingall the classical solutions
whichare full and isotropic,startingfrom holomorphicmapsf C-÷F7.

Referring to section 6 for more detaidedapplicationsto F’ models,we shall
herereviewsomemoreresultswhich will be useful in the following.

First of all it is natural to ask about the energy and the degree of a



CLASSICAL SOLUTIONS OF CPN NON LINEAR a-MODELS, ETC. 67

full isotropic solution constructed from a holomorphic map f. It can be

shown[16] that

= deg~fk~+ deg~-~k—)

and

deg~
4,k~= deg~ — deg~fk,~•

To computeE(4,~)and deg(4,~,),we needto know the degreeof the curves

associated to f. Let dk = deg~fk~ obviously d
0 = deg (f) = d and d_, =

= deg(f_,) = 0. The higherdk’s aregivenby thePluckerformulas

dk+ ~—

2dk+ dk_l = 2g— 2~~k’

where is the ramification index of fk (for more details, see [21]). Sincef,
is a constant map, d, must vanish. Summing the recurrencerelations above,
oneeasilyfinds that

~(r_j)~j=(r+l)d+r(r+l)(g_l).

Plucker formulas can be explicitely solved. If the conditionsd
0 = d and d7 = 0

areimposed,we find

dk=(k+ l)d+k(k+l)(g—l)—~(k—j)~, (0~<k~<r).

We havethenprovedthe following

PROPOSITION4.9. Let
4,k be a full isotropic mapofrank k (0 ‘~ k ‘~ r), associated

to a holomorphicmap f: C-+ F’ ofdeg(f) = d. Thentheenergyand thedegree

of 4,k are givenby

E(4,~)=deg(4,~)+ 2[kd + k(k—l)(g-l)— ~(k_/_1)~]~

deg(4,~)=d+2k(g—l)—~~/.

REMARK. Among the r + 1 full isotropic solutionsgeneratedby f, ~ and 4,,
are respectivelyhomorphicand antiholomorphic.Infact = 7is the polar of
the polar curve of f and it is not difficult to show that actuallyf= f, while
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4,, = f, beingthe polarof f, is antihoIomorph~c.From the formulasabove,wehave
that E(4,0) = deg (f) = deg (4,~)andE(4,,) = deg (f,1) = — deg(4,,), so that the

energy coincideswith (minus) the degree for (anti)-holomorphicmaps,as we

already know. Note that and 4,, are not homotopic, becausedeg (0~)*

* deg(4,,). Also, 7= 4,, is not in generalhomotopictof(z) (i.e. to the antiinstan-
ton solution associatedto f), sincedeg ~ — deg (f) and obviously E(4,,)*

*E(f). However, if f is such that r~i ~ = 2d + 2r(g— 1)’, 4,, is homotopicto
f(z)andE(4,,)=E(f).

4.10. The constructionof proposition4.7 yieldsplenty of classicalsolutionsof

F’ models. It is natural now to ask about their stability. Recall that, in this
context,by an unstablemap it is meantanextremumof the energy functional,

which is not a local minimun. In order to determinethe qualitative behaviour

of the energy functional near a harmonic map, we must considerits second
variation.

In general a vector field along a map 4, : M -+ N (M, N completeRiemannian

manifolds) is a section v(x) of the bundle 0*TN and it definesa variation of

4, by 4,~(x)= exp~,(tu(x));(for more details see e.g. [22]). Given two vector
fileds v andw along 4,, we choosea two-parametervariation suchthat

a~5~
s~t=0 s=t=O

Then:theHessian of the energy functional at 4, is the symmetricbilinear form

H(u,w)=
s=t=0

The index of 4, is the dimension of the subsapaceof the spaceof sectionsof

on which H is negativedefinite. A map which is an extremumfor E is

(weakly) stable if its index vanishes,i.e. if there areno variationswhich lower
its energy.

For our purposeswedo notneedsucha generalitybut we canrestrictourselves
to the caseof holomorphisvariations.In this case,wetakea holomorphicvector
field v along 4, and we constructa variation 4~of 4,, dependingon a complex

parameters, suchthat

a~5
— =0 — =v.

s=0 as

Forsucha v, thesecondvariationis [16]
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a2E I
— =—i
asas — Js0 C

where R( , , , ) is the curvaturetensoron TF’. Thepoint is now that the integral
aboveis non-negative,becauseF’ hasstrictly positivebisectionalcurvature.Hence
we seethat (anti)-holomorphicmapsare stable.

Eells and Wood [16] (seealso Din andZakrzewsky[15]) for a direct computa-
tion) wereableto showthat

PROPOSITION4.11. A classical solution 4, : P1 -+ P7 is stable if and only if it is
(anti)-holomorphic.

For highergenusthe resultsso far obtainedarenot completeandaregrounded

on anestimateof theindexby meansof the Riemann-Rochtheoremfor holomor-
phic vector bundles over a curve C. The result [16] is that for holomorphic

variations

Index(4,)~deg(4,)(r+1)+r(l—g).

We havethe

PROPOSITION 4.12. A classical solution 4, : C -+ F’ of degree larger than
r(g — l)/(r + 1)is stableif andonly if it is (anti)-holomorphic.

This propositiontells us that, at least for large degree,all the isotropic solu-
tionsare infactunstable.

5. CLASSIFICATION OF HOLOMORPHIC MAPS OF A CURVE INTO
PROJECTIVESPACES

5.1. The results recalled in section 4 show that a certain subclassof classical
solutions of F7 models, with generalizedboundary conditions, can be repre-

sented as holomorphic maps into IF’ of a certain RiemannsurfaceC, whose
genus dependson the chosenboundaryconditions. In any case,holomorphic

maps play a central role, either becausethey representinstantonsolutionsor
becausethey provide building blocks from which more generalsolutions can
be constructed.Moreover, when C = IF’, thesemore generalsolutionsexhaust

the whole classof classicalsolutions.

The next questionwe shall ask ourselvesis, roughly speaking, <<how many>>
classicalsolutionsof a given degreeand satisfying certain boundaryconditions



70 R. CATENACCI, M. CORNALBA, C. REINA

do we expect to exist. In view of the preceedingremarks,thisquestionis natural-
ly translatedinto the problem of classifying holomorphicmaps of a Riemann

surface into a projectivespace.Fortunately enough,quite a bit is known from

algebraicgeometry about this problem and our task in this sectionwill be to
give a quick review of the main results.For the sake of clearness,this will be
done in mathematicalterms,while applicationsto F’ modelswill be delayedto

section6.

5.2. We first recall that isomorphismclassesof complexstructureson a compact

orientablesurfaceSg of genusg are parametrizedby an irreducible quasi-pro-
jective [24] varietyMg~whose(complex) dimensionis 3g —3, when g ~ 2 and

0 or 1, wheng= 0,1 respectively[21]. For a pointp EMg~we havea complex
structureturningSg into a curve C, different points correspondingto inequiva-
lent structures.The variety Mg is classicallycalled the moduli spacefor genus

g curves;it is singularwheng ~ 2 and its singularitiesall arise from curves with

a non trivial automorphismgroup. From a <<physical>> point of view, one may
think of Mg as the variety of inequivalent conformal structureson S~(see Ap-
pendix B andsection3.2).

5.3. Let f: C—fF’ be a non-constantholomorphic map. If H stands for the
hyperplaneline bundle of F’, f determinesa line bundle L =f*(H) on C of

degreed = deg(f), plus r + 1 distinguishedsectionsof L gotten by pulling back
the homogeneouscoordinateson IF’; thesesectionsnevervanishsimultaneously.
Conversely,given a line bundle L of degreed > 0 on C and r + 1 sectionswith

no commonzeroesse,. . - , s, of L, we can constructa non constantmapf from

C to IF’ by setting

f(p) = [s0(p) s,(p)].

The sectionss~,- . - ,s, spanan s + 1-dimensionalvectorsubspaceVof H°(C,L),

i.e. a linear seriesof degreed anddimensionson C(ag~for short) with 1 ~s ~<r.

Clearly, V is base-point-free,that is no point of C is a common zero of all the
elementsof V. Thus, to give a degreed non-constantmap from C to F’ is the
same as giving a degreed line bundle L on C, a base-point-freeg~,V C JI°(C,L)
(1 ~ s ~ r),andr + 1 spanningvectorsfor V, up to homothety.

5.4. In view of theseremarks,we shall first focusour attention on the classifica-
tion of linear series,beginning with the classificationof completelinear series
on a fixed curve C (recall that a linear seriesV ç H°(C,L) is said to becomplete

if V actuallycoincideswith H°(C,L)).
The basic restrictionson the numbersr, d for completeg~’sare provided by
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the Riemann-Rochtheorem[21], which implies that

r ~i d —g,

with equality holding in any caseif d > 2g — 2, and by Clifford’s theorem[21],

whichstatesthat

2r~d

if d ~ 2g— 2.
Actually, Clifford’s theoremalso says that, if the bound 2r = d is attained

and 0 <d <2g — 2, then C has to be hyperelliptic, i.e. it can be represented
as a two-sheetedbranchedcovering of IF’. Since genusg hyperelliptic curves
are parametrizedby a 2g — 1-dimensionalsubvarietyOf Mg~wefind that ageneral

curveof genusg>2has nog’27, 0 <r <g — 1.

5.5. This is the first exampleof a more generalphenomenon,what happensis
that, for any fixed d, the higherthe maximum r suchthat C has ag~,the more
specialC is. To state this precisely we first recall that for any d, line bundles

of degreed on C are parametrizedby a a smoothg-dimensionalcompletevariety
Picd(C). For any couple r, d of non negativeintegers,we thendefine W~(C)to
be the subvariety of Picd~ whose points correspondto degreed line bundles

on C such that dim H°(C,L) ~‘ r + 1. In other terms, W~(C)parametrizescom-
pleteg~‘s on C suchthat F~ r.

The problemnow is: whatis the dimensionof W~(C)?Clearly,by the Riemann-
-Rochtheorem,we canrestrictourselvesto the caser ~ d —g. Moreover,

W~(C)= Pic”(C), if r = d —g,

W~(C)=ø, if r>d—g,d>2g—2,

whereasW~~2(C)contains precisely the canonicalline bundle of C. This, on
the one hand,disposesof the casesg = 0, 1; on the otherhand,wheng> 1, it

showsthatwe may limit ourselvesto the case0 <d < 2g — 2.

There is a preciseguess as to what the dimensionof W~(C)hasto be. Infact
it is not too hard to show that W~(C)is a determinantalsubvarietyof Picd(C)
and, more precisely, it can be locally defined as the locus where a certain

n x (d + n + 1 — g) matrix of holomorphic functions has rank at mostd + n —

—g— r (here n is any large enoughinteger) [25, 26]. Recalling that the variety

of matricesof rank at most k has codimension(n — k) (N — k) in the variety
of n x N matrices,wefind

dim W’~(C)~ p = g — (r + l)(g — d + r), if W~(C)* 0.
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At this point two questionsarise. First of all, when do we haveequality in

this inequality and, secondly,when is W’~(C)non empty? The answer to this
last questionwas given independentlyby Kempf [25] and Kleiman-Laksov[26,

27], who proved,amongother things,the following;

5.6. ExistenceTheoremfor SpecialDivisors. W~(C)* 0, wheneverp ~‘ 0.

As for our first question,it is clear from the secondpart of Clifford’s theorem

that the answerwill dependin an essentialway on the curve C. It was long an
open problem to determinewhat happensfor a generalcurve C of genusg> 1.

Thisissuewasfinally settledby Griffiths andHarris [28], who showed,

5.7. Theorem (Brill-Noether Con/ecture). Let C a general curve of genusg.

Supposer ~ d —g. Then

W~(C)=o, if p<O,

dim W’~(C)=p, if p~’0.

5.8. Our primary interest was in (possibly incomplete) linear seriesof fixed
degreed and dimensionr on C. Thesecan be parametrizedby a variety G~(C)

in sucha waythat thenaturalmapping

G’~(C)—*

gotten by associatingto each g~on C the correspondingcompleteseries, is

holomorphic(see e.g. [29]). Clearly, the fibre of ~yover L E W~(C)is the Gras-
mannianof r + 1-planesin H°(C,L). The basicfact aboutG~(C),whichgenerali-

zesthe Brill-Noetherconjecture,andwasprovedby Gieseker[30], is

5.9. Theorem(Fetri’s Con/ecture).If C is a generalcurveof genusg, then

a) whenp =g—(r + l)(g—d +r)<0, then G’d(C) =0,

b) whenp ~ 0, G’d(C) is smoothof dimensionp.

The new fact hereis that G’d(C) is smooth.The dimensionstatementis actually

containedin the Brill-Noether conjecture.In fact, when r <d —g, by the Rie-
mann-Rochtheorem, W~(C)= Pic”(C), whereasa generalfibre of ‘~‘ is the Gras-

mannianof r + 1-planesin a (d —g+ 1)-dimensionalvectorspace.Hence,

dimG~(C)=g+(r+1){(d—g+l)—(r+l)}=p,

as desired.

5.10. The existencetheoremof Kempf-Kleiman-Laksovis actually more precise
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than the bare statement5.6, in that it also yields an explicit formula for the
fundamentalclassw~of W~(C),when this varietyhasthe <<correct>> dimension

p. The formulais

w~= (g—p)!w°,
(g—d+2r)!...(g—d+r)! p

where,of course,r ~ d —g. In particular,when p = 0 and C is general,W’~(C)

consistsof exactly

r!...0!

(g—d+2r)L..(g—d+r)! g.

points.
A very important result concerningthe connectivity of W~(C)and which,

in a way, generalizesthe existencetheorem5.6, hasbeenrecentlyobtainedby

Fulton andLazarsfeld[311.Whatthey showis

PROPOSITION5.11. Assumep > 0. Then, for any curve C, W~,(C)(or, which

is the same,G’~(C))is connected.

REMARK. When C is general,this result, coupled with Petri’s conjecture5.9,

shows that W~(C)is irreducible.Of course,W’~(C)may be very well reducible
for specialC.

Another problem which has apparentlyreceived little attention is the one
of characterizingcurves C such that the dimension of W~(C)is <<larger than

expected>>.A first result in this direction is provided by the secondpart of Clif-
ford’s theorem.Martens[32] hasshown that, if thereare d and r suchthat 0 <
<d ~s~g— 1 and dim W~(C)~a d — 2r, thenC is hyperelliptic.The casein which

the dimensionof W~(C)is at leastd — 2r — I hasbeenstudiedby Mumford [33].

5.12. As we mentionedat the beginning of this section,our interest in linear

systemsstemsfrom the fact that full holomorphicmappingsof degreed from a
curve C into F’ (up to projectivities)are in 1 — 1 correspondencewith base-
-point-free ~ ‘s on C. However, the results we have mentionedlater deal with
the totality of g’~‘s, be they base-point-freeon not. Our disregardof this fine
point is justified, at least in part, by the remark that, when C is generaland

r~d—g,r)’0,themap

W~,(C)xC—+W~,(C),
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gotten by associatingto eachcouple(L, p) the line bundleL(p), cannotbe onto

since,by 5.7,

dim W~(C)~ dim W~,(C)+ 2.

This meansthat, when C is generaland r ~ d —g, r> 0, ageneralpoint of W’~(C)

is a ~ with no base points. By contrast,when C is special,W’d(C) may consist
entirely of linear systemswith a non-emptybaselocus;an exampleis provided,

for instance,by W~(C)for an hyperelliptic curve C of genusg> 2.

6. ON THE ENERGY SPECTURM AND THE SPACE OF MODULI OF P1
CLASSICAL SOLUTIONS

6.1. Coming back to the classicalsolutionsof F’ models, we shall assume,as
alreadymentionedin section3.2, that C is a curveof genusg with a fixed com-

plex structure. This comes from the <<physical>> conformal structure defined
on the 2-dimensionalrealsurfaceS~which is the domainof theproblem.

The problem we shall deal with in this sectionis to study the set of smooth
classicalsolutions of F’ models,by describing their energyspectrumand para-

meterspaces.

6.2. We shall start with stable solutions, which are (anti)-holomorphic, since

in this casewe candirectly applythe resultsrecalledin section5.

We know that instantonsolutions fall into (disjoint) homotopyclasses.These
are classified by their degreeor, in physical terms,by their topological charge.
For any (admissible)value of the topological charge,thereis only one possible

valuefor the energy,i.e. E(f) =~ deg(f)~.So the energyspectrumof thesesolu-

tions is in principle known,provided one knows which valuesof the topological
chargeare admissible.We shall limit ourselvesto the holomorphiccase,theanti-
holomorphicone being obtainedby a reversalof orientation.From theorem5.9,

wehavethat for a generalcurveit mustbe

5
d~— g+s,

s+l

wheres is the dimensionof the least linear subspaceof F7 containingthe image
of f. Thus,for a generalcurve,thereareno instantonswhend <(g/2) + 1.

6.3. Next, given an admissibled, we would like to know how many <<essential>>

parameterswill a generic instantonof degreed dependon. To this purpose,we
recall that to any such solution f: C -÷ IF’ thereare attacheda base-point-free
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g~(1 ~ s ~ r) and r + 1 spanningvectorsfor the g~,determinedup to homothe-

thy. The numbers is the dimensionof the linear subspaceof F’ spannedby
f(C); thus full solutionsare characterizedby s = r. As in section 5.8, we shall
denoteby G~(C)the spaceof all g~’son C; in addition, we let G~(C)be the
open subset consistingof base-point-freeseries.We shall also denoteby B~’(C)

the holomorphicbundle over G~(C) whose fibre over VE G~(C)consistsof all
setsof r + 1 spanningvectorsfor V, up to homotheties.Clearly,B~‘(C) parame-
trizes instantonsolutionsf: C-÷ F’ suchthat the spanof f(C) hasdimensions.
The closureB~’(C)of B~’(C)in the spaceof all degreed instantonsolutionsis

obtainedby relaxing the conditions on the r + 1 vectorsto be chosenin V to
themererequirementthat theydo not havecommonzeroes.

We now assumethat C is general.To computethedimensionof B~j’(C),recall
that when p(s) = g — (s + l)(g — d + s) -(0, G~(C)is empty; henceB~’(C)is

also empty when p(s)<0. When p(s) = 0, G~,(C)is a discrete set containing

s!.. .0!
n= g!

(g—d+2s)! .

points. Accordingly,B~‘(C) is the disjoint union of n copiesof the homogeneous
spaceFGI(r)/F, where I’ is the group of all linear transformationsfixing s + 1
independentvectors. Finally, when p(s)> 0, G~(C),and hence ~(C),is a

smoothconnectedcomplexmanifold of dimensionp(s);thusB~‘(C) is a smooth
connected complex manifold of dimension p(s) + dim (FG1(r)/[’) = p(s) +
+ (r + 1) (s + 1)— 1.

Turning to the full spaceB~(C)of instantonsolutionsf: C —* F’, for a general
curve Cthis is the disjoint union

B’d(C) = B~”(C)U B~”(C)U - . . U B~’(C).

In particular,weseethatB’d(C) hasirreduciblecomponentsof varying dimensions.

However, as we observed,the closureof each componentof B~’(C)intersects
B~’(C)for every t <5; thus, by proposition5.11, with the sole exceptionof the
casewhenp(r) = 0,B~(C)is connected.

Note that all the maps parametrizedby a fibre of B~’(C)can be obtained
one from the otherby the actionof PGI(r) on IF’ itself. They are all homotopic
and have the sameenergy. However,they cannotbe obtainedone from the other

by an action of the internal symmetry group of the model, which leavesthe
Lagrangianinvariant and trivially sendssolutions into solutions.As we know,
this group is the isometrygroupSU(r + l)/ZL7~,of the Fubini-Studymetric of
F’. Accordingly, we would like better to parametrizethe orbits of the internal
symmetrygroup in the parameterspaceB~‘(C), i.e. to parametrizethe instanton
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solutions up to a SU(r + l)/~~, gauge transformation.To simplify matters,

we shall do this only for full solutions, i.e. for B~’(C).From the discussion

above,we havethe following

6.4. THEOREM. A) The spaceoffull homomorphicF’-instantons(up to a global

SU(r + l)/~,~,gaugetransformation)is thebundle

PGI(,)/SUfr+ 1)
N’d(C) G’~(C),

whereN~(C)isthe quotientbundleB~’(C)/SU(r+ 1).
B) Letp =g—(r+ l)(g—d +r). Forageneralcurve C, we then have

i) ifp<0, thenN’d(C) =0;

ii) if p = 0, N’~(C)is thedisjoint unionof

(g—d+2r)!...(g—d+r)! g!

copiesofFGI(r)/SU(r + 1);
iu) if p > 0, N~(C)is a smoothconnectedmanifoldofreal dimension

dimN~(C)=(r+l)(2d—r+ l)—2rg—l.

REMARK. Note that thereare specialcurves for which thereare <<more>> instan-
tons than statedin (B), while (A) holdsin any case.Thisdependson the structure

of G’d(C) (seesection5).

The case of F7 models over F1 will be further discussedin the following.

6.5. Besides instantons,for r> 1 there are other maps at which the energy
functionalof F’ modelsis stationary.From proposition4.11, we know that all

these maps give saddle points for the energy, that is thereare perturbations

which lower their energy. Hence, at a given admissibledegree,we haveminimum
energy solutions (i.e. instantons) and possibly higher energyunstablesolutions,
which arehomotopicto theinstantonsandmay bethoughtas their <<excitations>>.

Our knowledgeabout theseexcitations for a general F’ model over a curve
C is far from being complete. Indeed we do know somethingaboutthose,among
them, which are full and isotropic. This isotropy property is a rather technical

requirement, which does not have, in our opinion, any <<physical>> counterpart.

On the other hand, it yields a whole subclassof non holomorphicsolutions.
Recall that,according to proposition 4.7, from any instanton wecangenerate
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r — 1 isotropic solutions 4,k (0 <k <r) which are neither holomorphic nor

antiholomorphic. It is clear that each will dependon the sameparameters
as ~ However, in general,the 4,k’~ will not have the samedegreeof and
hancecannotbe consideredasexcitedstatesof itself.

What one would really like to know is the spectrumof the energyof isotropic
solutionsat a given degree,that is the energyspectrumof the excitedstatesof a
given instantonsolution. Then, for a given degreed and enegyE> d, one can

ask for the parameterspaceof excitedsolutions.We can answerthesequestions

only partially; nevertheless,a numberof results canbe proved and a qualitative
descriptionof the energyspectrumof theexcitedstatescanbegiven.

6.6. Recall from proposition 4.9 that the energy spectrum of full isotropic
solutionsis givenby

~

deg(4,~)= deg(4,
0)+ 2k(g—l)—~~1,

where = 7 has been identified with f. It is apparentthat E( i//k) — deg (I//k)

is even, but we do not know if any evennumber is actually attained.We can
howeverprovethat thereare infinitely many excitationsat agivendegree(larger
than a suitable limit) with arbitrarily high energies.The proof will be given in

two steps. First we state a result which is interesting by itself, since it holds
for F’ modelsoverF’, with r ~‘ 2.

PROPOSITION6.7. For any d ~ r — 2, thereexistfull classicalsolutions 4, :

—‘- F’ (r ~‘ 2) with deg (4,) = d andarbitrarily high energy.

Proof. We may limit ourselves to consider solutions of the form 4,~,with
deg(~~)= d’ ~‘ r. For r> 2, we considerthe maps ~ obtainedby projecting

the Veronesemap, locally given by z —÷(1, z,z
2,..., z’1’), onto IF’ in such a

way that can be locally representedby z -÷ (1,z’~,Z’2, - -. , ~ z”) with
0 <1~<. . . <i,

1 <d’. These maps and their associatedcurves are ramified

at z= 0, oc - According to [21], their ramification indices are given by 13~=

= ~ + , — i2 + z,~— i,~_1— 2, where we put i5 = 0 for 2 ~ 0, andi, = d’. Hence

~ f3~= d’ + (
1k— i,k) — 2k and deg(4,,) = 1,—k— ~k As for 4,~,we havethat

any value
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—(d’—2)~deg(4,,)~—(r—2);(r—2)deg(4,,)<(d’—2),

can be obtained,by a suitablechoice of i,~ and i1. This showsthat we haveat

least one isotropic solution of degree d ~‘ r — 2 generatedby holomorphic

mapsof any degreed’ ~ r. The case r = 2 needsfurther consideration,sinceif
is takenas above,deg (i/i,) = 0 in any case.We then considersolutionsof the

form ~ generated by holomorphic maps ~ : F’ -+ F
2 given locally by

z -÷ (1, (z+ 1 )d’i, z’~’), with 1 ~ i ~ d’ — 1. In this case = i — 1, so that

deg(4,~)= d’ — i — 1. By consideringthesemaps togheterwith thosegenerated
by 4,~,one hasthat also in this caseany valueof deg(4,~)within the limits given
aboveis possible.As for the energy,we havein any casethatE(4,,) = deg (4,~)+
+ 2d’. Sinced’ can be arbitrarily high, E can be arbitrarily largein any homo-

topy class.

REMARK. Incidentally, we note that any valueof the energyE = deg (4,~)+ 2m,
with m ~‘ r is admissiblein the caseof F’ modelsover F1. In fact thereexists
a solutionof the form 4,~with that energyand degree.

6.8. The results of proposition 6.7 can be somewhatextendedto F’ models
over a general curve C, by consideringmaps I//k generatedby quite specialholo-

morphic maps.Infact we do not know very much about the ramificationpro-
pertiesof holomorphicmaps of C into IF’, while more canbe said aboutmaps

which ariseby compositionas follows
h if

C—~-F—+IP.

Here h is a branchedcovering of F’ which, according to section 5, hasdegree
n = deg(h)~’[(g + 1)/2] + 1, where [ ] standsfor theintegralpart.

Let = f o h. It is not difficult to computethe ramification indeces~ of
and its associatedcurves;onehas

IJk=nI3k+2(n +g—l),

where/3kare the ramificationindicesoff andits associatedcurves.
Accordingly, the energy and the degreeof the isotropic maps 4,,~generated

by 4,~are

E(i/i,~)=degO//,~)+n{E(4,~)—deg(4,~)}+(g—1){k2(l—n)—2k+l_n}—k(k—l)n,

deg(4,,)=ndeg(4,~)—2kng.

Wehavenow the following

PROPOSITION6.9. Let d’=nd— 2kng, with n ~ [(g+1)/2]+l, d>~r,0<k<r.
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There exist full isotropic solutions 4, : C—+ F’ of degree d’ andarbitrarily high

energy.

Froof. If deg (4,) = d’, thereexists in the homotopyclassof 4, at least one solu-

tion of the form ~ generatedby d4~=fo h. From proposition 6.7, we seethat
one can choosef such that E(4,~)is arbitrarily high. The result then follows

from the formula abovefor the energy

REMARK. Albeit far less completethan in the case of IF’ modelsover F’, the
propositionaboveleadsto conjecturethat the energyspectrumof a generalF’

model is qualitatively similar to that of proposition 6.7, showingarbitrarily high
energy excitations of any given instantonsolution. Our proof, however,holds

only for certain degrees.This is becausewe restrictedourselvesto considersui-
table composite maps, which let the proof be technically easy.To proovea
proposition analogousto 6.7, one would needto classify the possible ramifi-
cation behavioursof holomorphicmaps 4, : C -÷ F’ and their associatedcurves,
for a generalcurve C. Very little seemsto be known in this direction.

6.10. As for the parameterspaces of full isotropic solutions, we have seen
that they coincide with the parameterspacesof the holomorphicmaps from

which isotropic maps are generated.In principle, the questionis answeredby
proposition6.4, with minor modificationsconcerningthe notion of <<effective>>
parameters.However, such an information is of little use,since one would like

to know the parameterspaceof solutionswith a given degreeand energy.It
shouldbe clear by now, that we cannotanswerthis questionin full generality,

becausewe do not know which energy valuesare admissiblefor excitationsof
a given degree.Nor do we know how many isotropic solutionsgeneratedby

different holomorphic maps have the sameenergy and degree.Once again, to
solvethesequestions,one needsto studyin full detail theramification properties
of holomorphicmapsof C into F’. Finally, if C is not IF’ or a torus,theremay

be excitations which are not isotropic. About these last solutions nothing is
known.

7. CONCLUDING REMARKS

Although mostof the modelsconsideredhere haveno direct physicalapplica-

tion, they have beenextensively studiedin the physical literaturebecausethey
providea sort of <<theoreticallaboratory>>for testing ideasand toolsin thestudy

of non linearfield theories.
This fact is clearly apparentevenat the classicallevel, since,as we haveseen,
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CF~modelsoffer a nice exampleof the power of the algebraicgeometricalme-

thodswheneverthey canbeappliedto a field theory.
To summarize,we haveseenseveral interestingphenomena.First of all, we

havean exampleof a field theory in which the <<spaceof fields>> has a rich topo-
logical structure.Namely, becauseof the boundaryconditions,continousfields

in CF” modelsfall into disjoint homotopyclasses.Accordingly, we havein princi-

ple as many variationalproblemsfor the energy functional as homotopyclasses
of fields. This mimics the situation of Yang-Mills gaugetheorieson ~4, where

one has as many variationalprinciples for the Yang-Mills action as principal
fibre bundleson ~4 itself, with given structuregroup G. Besides,one knows
that isomorphismclassesof such bundlesare in one-to-onecorrespondencewith
homotopyclassesof maps of S4 into the classifying spaceBG of the group G.

Next,in any givenhomotopyclassof maps,wehave
— absoluteminima of the energy functional, which are given by instantons,

— saddle points of the energy functional, whichare given by isotropic maps.

All instantonsare algebraicobjects,i.e. (anti)-holomorphicmaps 4, : C-÷IF’.
Also this phenomenonis commonto Yang-Mills instantonsoverS4 [4]. Moreover,

both in the C?’ and in the Yang-Mills case,algebraicgeometrytells us a great
dealaboutthe parameterspacesof instantonsolutions.

Unstableexcitationshaveno analoguein the Yang-Mills case.It is known that

finite energy solutions for Yang-Mills theory on S4 which areweakly stableare

actually instantons,and one is lead to guessthat for G = SU(n) (n > 2) there

might exist finite energy unstablesolutions of Yang-Mills field equations,in

analogywith the C?’ models.Up to now,noneof thesehasbeenfound.
Finally, we mention an applicationof the results aboveto CF2 models[34]

where some physical interpretation o-f isotropic solutionsin given in terms of
instanton-anti-instantoncompositestates.

APPENDIX A: COMPLEX PROJECTIVE SPACE

A.1. Complex projective r-dimensionalspaces,which will be denotedby F’,
are defined as follows. Let C* = — 0 be the multiplicative group of non

zero complex numbers.It acts in a natural way on C7+ ‘—{O} by (X, z)-÷Xz.

whereXE C*,z E ~ — {0}. Sincethis action is free,onecanconstructthespace
pr of its orbits. Alternatively,F’ canbe consideredas the setof complex<<lines>>

(i.e. real 2-planes)throughthe origin of C’~’.Thus F’ is seenas the basisspace

of the principal fibre bundle

with structuregroup C”. Any point z =(z°, - . . ,z’)EC’~1—{O}determinesa
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unique point in F’. (z0, . . . ,zT) are called homogenouscoordinates in F’,
(z0, . . . , z’) and (Xz0, - . . , Xz’) correspondingto the samepoint in IF’ for any

XE C”’.

A.2. F’ can be given a standardcomplex structureas follows. Let U
0 C IF’ be

the open set in which z°’* 0 (a = 0, - . . , r). We can definea local homeomor-
phism r,,, : U,,, —* C’ by p -÷ = z~(p)/z°(p)(i * a). The complex structureof

F’ then arisesby defining the transitionfunctions on the intersectionsU n U~
to be the holomorphicmapsof C’ into itself given by

for 0~i~r, i*a.

In particular~ is the Riemannsphere.

A.3. F’ can be given also a standardKähler structure(seee.g. [211). Consider

the closed2-form

= — 4i a alog(z°20)=

z0Y0dz~Ad2~_T~dz0Az~di1~
= — 4i

(z°’~)
2

on C’~‘—{O}, where (a) a is the (anti) holomorphicexterior differential. If

7ris the projection of the standardC*~bundleover F’ (seeA.l), one canshow
that thereexistsa unique globally defined2-form ‘I’ on F’ suchthat ~ =

Sinced and ir* commute,we seethat 4 is closedanddefinesthestandardKähler
structureon F’. The Kähler metric correspondingto F isgiven by

z°2dz~ed2—2 dza®zlIdf
h=h dz°ed2~= °‘ 5 13

(z0~2
0)

2

which is called the Fubini-Study metric of F’. It is apparentthat h sharesthe

sameisometry group of the standardhermiteanmetric ~ = dz°e d2
0 of C’~1,

i.e. U(n + 1). However, only SU(r + 1)/ZZ,~,is the effective isometry group

of the Fubii-Studymetric of IF’.

A.5. To give a local form of 4’ or of h on F’, recall first that aa log (z
02

0)=

= aa log (Xz°’Xz0).On U0, wherez
0* 0, let X = liz0,andget

~=—4ia~log(l+~~
01).

Moreover, it is easyto prove that on U0 fl U13, aa log (1 + ~ ~,,) = aa log (1 +

+ ~ so that 1 is globally defined. Correspondingly,we have a local expres-
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sion for theKähler metrich given by

h — (1 ~1U
0 (1 ~

A.4. IF’ can be also consideredas the basis spaceof a U( 1)-bundlewith total

spacethe sphere527+1 (seee.g. [35]). Let C”’~’be giventhe standardhermitean

structure (z,z) = z
02

0, and considerthe unit sphereS
2’~~C C’~ given by

z02
0= 1. Any point on S

2’~1then correspondsto a point in F’, with homoge-
neous coordinates(z0, . . . , z’). Conversely a point on F’ correspondsto the

set (Xz°,. . . , Xz’) with X~= 1 on ~27+1, which is an orbit of U(l) on S2’~1

itself. We havethen the principal fibre bundle

U(i) IF’.

APPENDIX B: CONFORMAL AND COMPLEX STRUCTURES ON

B .1. Let be an orientable2-dimensionalsurface,and let a be any C~’metric

on Sg• It is known that thereexistsan atlas of isothermalcoordinatesx’, x2
i.e. a covering{ U

0 }of Sgand coordinatesx~,x~for which

a ~ =f0
2(dx~edx~+ dx~ødx~),

where f~is a non vanishing C~function. The invariance of a implies that in

U
0 fl U~,dz0= dx~+ i dx~is proportionalto dz13= dx~+ i dxi, if the orienta-

tion is preserved.Thenz,,, is proportionalto z13, andS5isa complexmanifold.

B.2. Explicitely the complexstructureJ is given by

J~(a/ax’= ±a/ax
2 .J÷(a/ax2)= i a/ax’.

where the sign±dependson the orientationchosen.It is apparentthat for any
couple of vector fields X, Y tangent to S

5, one has a(J(X), J(Y))=a(X, Y).
Moreover, defining 4(X, fl =a(X,J(Y)), it is d’t = 0,so that a is Kähler with

respectto J.

B.3. If we now considera metrica’conformalto a,it is apparentthat any isother-

mal covering for a is also an isothermalcoveringfor a’. Thereforethe two metrics
induce the samecomplexstructure.The converseis also true. If J is anycomplex

structureon Sg~let z0 be the correspondinglocal complex coordinate. Then,for
any set f

2 } of realnon vanishingC~functionssuchthat in fl U
13
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.t~2=f
0

2Iaz
0,/az13!

2,

we can define a tensorfield a
0 = f

2 dz ® d2. It is now clearthat thereexists

a global (Kähler) metric a on Sg such that a IC’ = a
0. Moreover,sincethef

2’s

are definedup to a multiplicative positive function, we have that J determines
a conformalclassof metrics.Summingup,we havethen the

PROPOSITION. On Sg there is a one to one correspondencebetweencomplex

structuresand conformalequivalenceclassesof metrics.
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